附加 ( Additional )
📄️ 分析文档 (Analyze Document)
LangChain
📄️ ConstitutionalChain 自我批判链
LangChain
📄️ 抽取
抽取链使用OpenAI的"functions"参数来指定从文档中抽取实体的模式。这样可以确保模型输出我们想要的实体和属性模式,并具有适当的类型。
📄️ FLARE
This notebook is an implementation of Forward-Looking Active REtrieval augmented generation (FLARE).
📄️ Graph DB QA chain
This notebook shows how to use LLMs to provide a natural language interface to a graph database you can query with the Cypher query language.
📄️ NebulaGraphQAChain
本笔记本展示了如何使用语言模型为NebulaGraph数据库提供自然语言接口。
📄️ Graph QA
This notebook goes over how to do question answering over a graph data structure.
📄️ 虚拟文档嵌入
这个笔记本介绍了如何使用虚拟文档嵌入(HyDE),如这篇论文所述。
📄️ Bash chain
This notebook showcases using LLMs and a bash process to perform simple filesystem commands.
📄️ 自检链
这个笔记本展示了如何使用LLMCheckerChain。
📄️ 数学链
本笔记本展示了使用LLMs和Python REPL解决复杂的数学问题。
📄️ HTTP request chain
使用request库从URL获取HTML结果,然后使用LLM解析结果
📄️ Summarization checker chain
This notebook shows some examples of LLMSummarizationCheckerChain in use with different types of texts. It has a few distinct differences from the LLMCheckerChain, in that it doesn't have any assumptions to the format of the input text (or summary).
📄️ 审查 Moderation
LangChain
📄️ 动态从多个提示中选择 multi_prompt_router
LangChain
📄️ 动态选择多个检索器 multi_retrieval_qa_router
LangChain
📄️ 使用OpenAI函数进行检索问答
OpenAI函数允许对响应输出进行结构化。在问答问题时,除了获取最终答案外,还可以获取支持证据、引用等,这通常很有用。
📄️ OpenAPI chain
This notebook shows an example of using an OpenAPI chain to call an endpoint in natural language, and get back a response in natural language.
📄️ Program-aided language model (PAL) chain
Implements Program-Aided Language Models, as in https://arxiv.org/pdf/2211.10435.pdf.
📄️ Question-Answering Citations
This notebook shows how to use OpenAI functions ability to extract citations from text.
📄️ 文档问答 qa_with_sources
LangChain
📄️ 标记
标记链使用OpenAI的functions参数来指定用于标记文档的模式。这帮助我们确保模型输出我们想要的准确标记及其适当的类型。
📄️ Vector store-augmented text generation
This notebook walks through how to use LangChain for text generation over a vector index. This is useful if we want to generate text that is able to draw from a large body of custom text, for example, generating blog posts that have an understanding of previous blog posts written, or product tutorials that can refer to product documentation.