SingleStoreDB
SingleStoreDB is a high-performance distributed SQL database that supports deployment both in the cloud and on-premises. It provides vector storage, and vector functions including dot_product and euclidean_distance, thereby supporting AI applications that require text similarity matching. This tutorial illustrates how to work with vector data in SingleStoreDB.
# Establishing a connection to the database is facilitated through the singlestoredb Python connector.
# Please ensure that this connector is installed in your working environment.
!pip install singlestoredb
import os
import getpass
# We want to use OpenAIEmbeddings so we have to get the OpenAI API Key.
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import SingleStoreDB
from langchain.document_loaders import TextLoader
# Load text samples
loader = TextLoader('../../../state_of_the_union.txt')
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
embeddings = OpenAIEmbeddings()
There are several ways to establish a connection to the database. You can either set up environment variables or pass named parameters to the SingleStoreDB constructor
. Alternatively, you may provide these parameters to the from_documents
and from_texts
methods.
# Setup connection url as environment variable
os.environ["SINGLESTOREDB_URL"] = "root:pass@localhost:3306/db"
# Load documents to the store
docsearch = SingleStoreDB.from_documents(
docs,
embeddings,
table_name = "notebook", # use table with a custom name
)
query = "What did the president say about Ketanji Brown Jackson"
docs = docsearch.similarity_search(query) # Find documents that correspond to the query
print(docs[0].page_content)