Skip to main content

Plug-and-Plai

This notebook builds upon the idea of tool retrieval, but pulls all tools from plugnplai - a directory of AI Plugins.

Set up environment

Do necessary imports, etc.

Install plugnplai lib to get a list of active plugins from https://plugplai.com directory

pip install plugnplai -q
[notice] A new release of pip available: 22.3.1 -> 23.1.1
[notice] To update, run: pip install --upgrade pip
Note: you may need to restart the kernel to use updated packages.
from langchain.agents import (
Tool,
AgentExecutor,
LLMSingleActionAgent,
AgentOutputParser,
)
from langchain.prompts import StringPromptTemplate
from langchain import OpenAI, SerpAPIWrapper, LLMChain
from typing import List, Union
from langchain.schema import AgentAction, AgentFinish
from langchain.agents.agent_toolkits import NLAToolkit
from langchain.tools.plugin import AIPlugin
import re
import plugnplai

Setup LLM

llm = OpenAI(temperature=0)

Set up plugins

Load and index plugins

# Get all plugins from plugnplai.com
urls = plugnplai.get_plugins()

# Get ChatGPT plugins - only ChatGPT verified plugins
urls = plugnplai.get_plugins(filter="ChatGPT")

# Get working plugins - only tested plugins (in progress)
urls = plugnplai.get_plugins(filter="working")


AI_PLUGINS = [AIPlugin.from_url(url + "/.well-known/ai-plugin.json") for url in urls]

Tool Retriever

We will use a vectorstore to create embeddings for each tool description. Then, for an incoming query we can create embeddings for that query and do a similarity search for relevant tools.

from langchain.vectorstores import FAISS
from langchain.embeddings import OpenAIEmbeddings
from langchain.schema import Document
embeddings = OpenAIEmbeddings()
docs = [
Document(
page_content=plugin.description_for_model,
metadata={"plugin_name": plugin.name_for_model},
)
for plugin in AI_PLUGINS
]
vector_store = FAISS.from_documents(docs, embeddings)
toolkits_dict = {
plugin.name_for_model: NLAToolkit.from_llm_and_ai_plugin(llm, plugin)
for plugin in AI_PLUGINS
}
Attempting to load an OpenAPI 3.0.1 spec.  This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.
Attempting to load an OpenAPI 3.0.1 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.
Attempting to load an OpenAPI 3.0.1 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.
Attempting to load an OpenAPI 3.0.2 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.
Attempting to load an OpenAPI 3.0.1 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.
Attempting to load an OpenAPI 3.0.1 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.
Attempting to load an OpenAPI 3.0.1 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.
Attempting to load an OpenAPI 3.0.1 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.
Attempting to load a Swagger 2.0 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.
retriever = vector_store.as_retriever()


def get_tools(query):
# Get documents, which contain the Plugins to use
docs = retriever.get_relevant_documents(query)
# Get the toolkits, one for each plugin
tool_kits = [toolkits_dict[d.metadata["plugin_name"]] for d in docs]
# Get the tools: a separate NLAChain for each endpoint
tools = []
for tk in tool_kits:
tools.extend(tk.nla_tools)
return tools

We can now test this retriever to see if it seems to work.

tools = get_tools("What could I do today with my kiddo")
[t.name for t in tools]
['Milo.askMilo',
'Zapier_Natural_Language_Actions_(NLA)_API_(Dynamic)_-_Beta.search_all_actions',
'Zapier_Natural_Language_Actions_(NLA)_API_(Dynamic)_-_Beta.preview_a_zap',
'Zapier_Natural_Language_Actions_(NLA)_API_(Dynamic)_-_Beta.get_configuration_link',
'Zapier_Natural_Language_Actions_(NLA)_API_(Dynamic)_-_Beta.list_exposed_actions',
'SchoolDigger_API_V2.0.Autocomplete_GetSchools',
'SchoolDigger_API_V2.0.Districts_GetAllDistricts2',
'SchoolDigger_API_V2.0.Districts_GetDistrict2',
'SchoolDigger_API_V2.0.Rankings_GetSchoolRank2',
'SchoolDigger_API_V2.0.Rankings_GetRank_District',
'SchoolDigger_API_V2.0.Schools_GetAllSchools20',
'SchoolDigger_API_V2.0.Schools_GetSchool20',
'Speak.translate',
'Speak.explainPhrase',
'Speak.explainTask']
tools = get_tools("what shirts can i buy?")
[t.name for t in tools]
['Open_AI_Klarna_product_Api.productsUsingGET',
'Milo.askMilo',
'Zapier_Natural_Language_Actions_(NLA)_API_(Dynamic)_-_Beta.search_all_actions',
'Zapier_Natural_Language_Actions_(NLA)_API_(Dynamic)_-_Beta.preview_a_zap',
'Zapier_Natural_Language_Actions_(NLA)_API_(Dynamic)_-_Beta.get_configuration_link',
'Zapier_Natural_Language_Actions_(NLA)_API_(Dynamic)_-_Beta.list_exposed_actions',
'SchoolDigger_API_V2.0.Autocomplete_GetSchools',
'SchoolDigger_API_V2.0.Districts_GetAllDistricts2',
'SchoolDigger_API_V2.0.Districts_GetDistrict2',
'SchoolDigger_API_V2.0.Rankings_GetSchoolRank2',
'SchoolDigger_API_V2.0.Rankings_GetRank_District',
'SchoolDigger_API_V2.0.Schools_GetAllSchools20',
'SchoolDigger_API_V2.0.Schools_GetSchool20']

Prompt Template

The prompt template is pretty standard, because we're not actually changing that much logic in the actual prompt template, but rather we are just changing how retrieval is done.

# Set up the base template
template = """Answer the following questions as best you can, but speaking as a pirate might speak. You have access to the following tools:

{tools}

Use the following format:

Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [{tool_names}]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question

Begin! Remember to speak as a pirate when giving your final answer. Use lots of "Arg"s

Question: {input}
{agent_scratchpad}"""

The custom prompt template now has the concept of a tools_getter, which we call on the input to select the tools to use

from typing import Callable


# Set up a prompt template
class CustomPromptTemplate(StringPromptTemplate):
# The template to use
template: str
############## NEW ######################
# The list of tools available
tools_getter: Callable

def format(self, **kwargs) -> str:
# Get the intermediate steps (AgentAction, Observation tuples)
# Format them in a particular way
intermediate_steps = kwargs.pop("intermediate_steps")
thoughts = ""
for action, observation in intermediate_steps:
thoughts += action.log
thoughts += f"\nObservation: {observation}\nThought: "
# Set the agent_scratchpad variable to that value
kwargs["agent_scratchpad"] = thoughts
############## NEW ######################
tools = self.tools_getter(kwargs["input"])
# Create a tools variable from the list of tools provided
kwargs["tools"] = "\n".join(
[f"{tool.name}: {tool.description}" for tool in tools]
)
# Create a list of tool names for the tools provided
kwargs["tool_names"] = ", ".join([tool.name for tool in tools])
return self.template.format(**kwargs)
prompt = CustomPromptTemplate(
template=template,
tools_getter=get_tools,
# This omits the `agent_scratchpad`, `tools`, and `tool_names` variables because those are generated dynamically
# This includes the `intermediate_steps` variable because that is needed
input_variables=["input", "intermediate_steps"],
)

Output Parser

The output parser is unchanged from the previous notebook, since we are not changing anything about the output format.

class CustomOutputParser(AgentOutputParser):
def parse(self, llm_output: str) -> Union[AgentAction, AgentFinish]:
# Check if agent should finish
if "Final Answer:" in llm_output:
return AgentFinish(
# Return values is generally always a dictionary with a single `output` key
# It is not recommended to try anything else at the moment :)
return_values={"output": llm_output.split("Final Answer:")[-1].strip()},
log=llm_output,
)
# Parse out the action and action input
regex = r"Action\s*\d*\s*:(.*?)\nAction\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)"
match = re.search(regex, llm_output, re.DOTALL)
if not match:
raise ValueError(f"Could not parse LLM output: `{llm_output}`")
action = match.group(1).strip()
action_input = match.group(2)
# Return the action and action input
return AgentAction(
tool=action, tool_input=action_input.strip(" ").strip('"'), log=llm_output
)
output_parser = CustomOutputParser()

Set up LLM, stop sequence, and the agent

Also the same as the previous notebook

llm = OpenAI(temperature=0)
# LLM chain consisting of the LLM and a prompt
llm_chain = LLMChain(llm=llm, prompt=prompt)
tool_names = [tool.name for tool in tools]
agent = LLMSingleActionAgent(
llm_chain=llm_chain,
output_parser=output_parser,
stop=["\nObservation:"],
allowed_tools=tool_names,
)

Use the Agent

Now we can use it!

agent_executor = AgentExecutor.from_agent_and_tools(
agent=agent, tools=tools, verbose=True
)
agent_executor.run("what shirts can i buy?")
> Entering new AgentExecutor chain...
Thought: I need to find a product API
Action: Open_AI_Klarna_product_Api.productsUsingGET
Action Input: shirts

Observation:I found 10 shirts from the API response. They range in price from $9.99 to $450.00 and come in a variety of materials, colors, and patterns. I now know what shirts I can buy
Final Answer: Arg, I found 10 shirts from the API response. They range in price from $9.99 to $450.00 and come in a variety of materials, colors, and patterns.

> Finished chain.





'Arg, I found 10 shirts from the API response. They range in price from $9.99 to $450.00 and come in a variety of materials, colors, and patterns.'