AutoGPT
Implementation of https://github.com/Significant-Gravitas/Auto-GPT but with LangChain primitives (LLMs, PromptTemplates, VectorStores, Embeddings, Tools)
Set up tools
We'll set up an AutoGPT with a search tool, and write-file tool, and a read-file tool
from langchain.utilities import SerpAPIWrapper
from langchain.agents import Tool
from langchain.tools.file_management.write import WriteFileTool
from langchain.tools.file_management.read import ReadFileTool
search = SerpAPIWrapper()
tools = [
Tool(
name="search",
func=search.run,
description="useful for when you need to answer questions about current events. You should ask targeted questions",
),
WriteFileTool(),
ReadFileTool(),
]
Set up memory
The memory here is used for the agents intermediate steps
from langchain.vectorstores import FAISS
from langchain.docstore import InMemoryDocstore
from langchain.embeddings import OpenAIEmbeddings
# Define your embedding model
embeddings_model = OpenAIEmbeddings()
# Initialize the vectorstore as empty
import faiss
embedding_size = 1536
index = faiss.IndexFlatL2(embedding_size)
vectorstore = FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {})
Setup model and AutoGPT
Initialize everything! We will use ChatOpenAI model
from langchain.experimental import AutoGPT
from langchain.chat_models import ChatOpenAI
agent = AutoGPT.from_llm_and_tools(
ai_name="Tom",
ai_role="Assistant",
tools=tools,
llm=ChatOpenAI(temperature=0),
memory=vectorstore.as_retriever(),
)
# Set verbose to be true
agent.chain.verbose = True
Run an example
Here we will make it write a weather report for SF
agent.run(["write a weather report for SF today"])
Chat History Memory
In addition to the memory that holds the agent immediate steps, we also have a chat history memory. By default, the agent will use 'ChatMessageHistory' and it can be changed. This is useful when you want to use a different type of memory for example 'FileChatHistoryMemory'
from langchain.memory.chat_message_histories import FileChatMessageHistory
agent = AutoGPT.from_llm_and_tools(
ai_name="Tom",
ai_role="Assistant",
tools=tools,
llm=ChatOpenAI(temperature=0),
memory=vectorstore.as_retriever(),
chat_history_memory=FileChatMessageHistory("chat_history.txt"),
)