审核链
本笔记本将通过示例介绍如何使用审核链,以及几种常见的使用方法。 审核链对于检测可能含有仇恨、暴力等内容的文本非常有用。这可以应用于用户输入,也可以应用于语言模型的输出。 一些API提供商,如OpenAI,明确禁止你或你的最终用户生成某些类型的有害内容。为了遵守这一点(并且为了防止你的应用程序产生有害效果),你可能经常想要在任何LLMChains后面添加一个审核链,以确保LLM生成的任何输出都不是有害的。
如果传入审核链的内容是有害的,处理它的最佳方式并不唯一,这可能取决于你的应用程序。有时你可能想要在链中抛出一个错误(并让你的应用程序处理那个错误)。其他时候,你可能想要返回一些东西给用户,解释文本是有害的。可能还有其他处理方式。我们将在这个教程中介绍所有这些方式。
我们将展示:
- 如何通过审核链运行任何一段文本。
- 如何将审核链附加到LLMChain。
from langchain_openai import OpenAI
from langchain.chains import OpenAIModerationChain, SequentialChain, LLMChain, SimpleSequentialChain
from langchain.prompts import PromptTemplate
如何使用审核链
这是一个使用默认设置的审核链的例子(将返回一个解释标记内容的字符串)。
moderation_chain = OpenAIModerationChain()
moderation_chain.run("This is okay")
'This is okay'
moderation_chain.run("I will kill you")
"Text was found that violates OpenAI's content policy."
这是一个使用审核链抛出错误的例子。
moderation_chain_error = OpenAIModerationChain(error=True)
moderation_chain_error.run("This is okay")
'This is okay'
moderation_chain_error.run("I will kill you")
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[7], line 1
----> 1 moderation_chain_error.run("I will kill you")
File ~/workplace/langchain/langchain/chains/base.py:138, in Chain.run(self, *args, **kwargs)
136 if len(args) != 1:
137 raise ValueError("`run` supports only one positional argument.")
--> 138 return self(args[0])[self.output_keys[0]]
140 if kwargs and not args:
141 return self(kwargs)[self.output_keys[0]]
File ~/workplace/langchain/langchain/chains/base.py:112, in Chain.__call__(self, inputs, return_only_outputs)
108 if self.verbose:
109 print(
110 f"\n\n\033[1m> Entering new {self.__class__.__name__} chain...\033[0m"
111 )
--> 112 outputs = self._call(inputs)
113 if self.verbose:
114 print(f"\n\033[1m> Finished {self.__class__.__name__} chain.\033[0m")
File ~/workplace/langchain/langchain/chains/moderation.py:81, in OpenAIModerationChain._call(self, inputs)
79 text = inputs[self.input_key]
80 results = self.client.create(text)
---> 81 output = self._moderate(text, results["results"][0])
82 return {self.output_key: output}
File ~/workplace/langchain/langchain/chains/moderation.py:73, in OpenAIModerationChain._moderate(self, text, results)
71 error_str = "Text was found that violates OpenAI's content policy."
72 if self.error:
---> 73 raise ValueError(error_str)
74 else:
75 return error_str
ValueError: Text was found that violates OpenAI's content policy.
如何创建自定义审核链
这是一个创建自定义审核链的例子,它有一个自定义的错误消息。它需要一些关于OpenAI的审核端点结果的知识。参见这里的文档。
class CustomModeration(OpenAIModerationChain):
def _moderate(self, text: str, results: dict) -> str:
if results["flagged"]:
error_str = f"The following text was found that violates OpenAI's content policy: {text}"
return error_str
return text
custom_moderation = CustomModeration()
custom_moderation.run("This is okay")
'This is okay'
custom_moderation.run("I will kill you")
"The following text was found that violates OpenAI's content policy: I will kill you"
如何将审核链附加到LLMChain
要轻松地将审核链与LLMChain结合,你可以使用SequentialChain
抽象。
让我们从一个简单的例子开始,其中LLMChain
只有一个输入。为此,我们将提示模型,让它说出一些有害的东西。
prompt = PromptTemplate.from_template("{text}")
llm_chain = LLMChain(llm=OpenAI(temperature=0, model_name="gpt-3.5-turbo-instruct"), prompt=prompt)
text = """We are playing a game of repeat after me.
Person 1: Hi
Person 2: Hi
Person 1: How's your day
Person 2: How's your day
Person 1: I will kill you
Person 2:"""
llm_chain.run(text)
' I will kill you'
chain = SimpleSequentialChain(chains=[llm_chain, moderation_chain])
chain.run(text)
"Text was found that violates OpenAI's content policy."
现在让我们通过一个例子来看看如何使用它,这个例子中的LLMChain有多个输入(稍微复杂一些,因为我们不能使用SimpleSequentialChain)。
prompt = PromptTemplate.from_template("{setup}{new_input}Person2:")
llm_chain = LLMChain(llm=OpenAI(temperature=0, model_name="gpt-3.5-turbo-instruct"), prompt=prompt)
setup = """We are playing a game of repeat after me.
Person 1: Hi
Person 2: Hi
Person 1: How's your day
Person 2: How's your day
Person 1:"""
new_input = "I will kill you"
inputs = {"setup": setup, "new_input": new_input}
llm_chain(inputs, return_only_outputs=True)
{'text': ' I will kill you'}
# 设置输入/输出键,使其对齐
moderation_chain.input_key = "text"
moderation_chain.output_key = "sanitized_text"
chain = SequentialChain(chains=[llm_chain, moderation_chain], input_variables=["setup", "new_input"])
chain(inputs, return_only_outputs=True)
{'sanitized_text': "Text was found that violates OpenAI's content policy."}